
Presented to: IEEE Information Technology Professionals Conference

March 16, 2018

Embedded Systems Methodologies

This presentation consists of Engility Corporation general capabilities information that does not contain controlled technical
data as defined by the International Traffic in Arms (ITAR) Part or Export Administration Regulations (EAR) per EGL-CR02667.

2engility.com

Engility Proprietary

The issues (not my words)

• Nancy Leveson, a professor of aeronautics and astronautics at the Massachusetts Institute
of Technology: “The problem is that we are attempting to build systems that are beyond our
ability to intellectually manage.ò

• Dutch computer scientist Edsger Dijkstra wrote in 1988: “The programmer has to be able to
think in terms of conceptual hierarchies that are much deeper than a single mind ever
needed to face before.”

• Michael Barr, an expert witness for the plaintiff in the Toyota case: “You have software
watching the software. If the software malfunctions and the same program or same app that
is crashed is supposed to save the day, it canôt save the day because it is not working.”

• Chris Granger, a software developer who worked as a lead at Microsoft on Visual Studio:
“Visual Studio is one of the single largest pieces of software in the world. Itôs over 55 million
lines of codeéand more than 98 percent of it is completely irrelevant”

Reference: [CSA]

3engility.com

Engility Proprietary

Motivation

• Embedded Systems commonly have low development overhead, minimal
memory or storage per unit, and are heavily cost-driven
• There are significant market pressures to “shoot the Engineer and put it into production”

and not heavily invest in design rigor

• The Internet of Things (IoT) has proved that while capabilities can be
delivered inexpensively
• Releasing products that have Safety or Security vulnerabilities can cost hundreds of

thousands of dollars in rework or MILLIONS in lawsuits

4engility.com

Engility Proprietary

The “Playing Field”

• Programming Research, in “Addressing Security Vulnerabilities in
Embedded Applications…” opined that SECURITY IS JUST NOT A
PRIORITY
• ñMost development organizations, perhaps unknowingly, subscribe to the iron triangle

adage ïóget to market fast, with all the features planned, and a high level of
qualityépick two.ô And while quality has been part of the conversation, security is
typically omitted.ò [PR1]

• Jay Thomas, in the Embedded magazine article “Software Standards 101:
Tracing Code to Requirements,” opined that it is an industry standard that
making systems safe or secure includes ten steps (see slide 9) [JT]

5engility.com

Engility Proprietary

The “Playing Field” (cont.)

• Cost to fix increases exponentially through the design/integration process [PR2]

6engility.com

Engility Proprietary

The “Playing Field” (cont.)

• The Mirai botnet attack leads us to believe that we need to take the risk
seriously
• IoT companies especially need to evaluate any liability incurred due to Security flaws in

their products

• Even Operating Systems may not be secure

• According to a recent survey 38% of JAVA applications use a package with a known flaw
(aopalliance-1.0.jar) [SoSS]

• Design Complexity
• While speaking at the EE Live! 2014 conference, I was struck by the number of

presentations whose premise was, “Designs are complex. We need to add more
structure to the design process to ensure success!”

• I was pleasantly surprised, since I had been invited by the Conference Director to
present some relevant SE concepts to answer this need

• At the risk of “being the hammer that thinks everything is a nail,” I do think Design Rigor
can benefit the safety and security of embedded systems

7engility.com

Engility Proprietary

The “Minefield”

• It sounds like the “ten steps” mentioned above might be a good place to start
• Engility’s illustration shows that DEFECTS act like mines in a minefield

• “Code and Test” methodologies just CLEAR A PATH through the minefield

• System overload, operator error, or race conditions could force the system into
unexplored territory

8engility.com

Engility Proprietary

“Design 2.0:” Improving the Process

9engility.com

Engility Proprietary

Jay Thomas’ “10 Steps” of Design Rigor [PR1]

• “Perform a safety or security assessment,

• Determine a target system failure rate,

• Use the target system failure rate to determine the appropriate level of development rigor,

• Use a formal requirements capture process,

• Create software that adheres to an appropriate coding standard,

• Trace all code back to their source requirements,

• Develop all software and system test cases based on requirements,

• Trace test cases to requirements,

• Use coverage analysis to test completeness against both requirements and code,

• For certification, collect and collate the process artifacts required to demonstrate that an appropriate level
of rigor has been maintained.” [JT]

Since Embedded systems have low development overhead, minimal memory or storage per unit, and are heavily cost-
driven, these comments are encouraging to those who support more rigorous design.

10engility.com

Engility Proprietary

What Should the Design Process Look Like???

1. User Needs (What do I really want to Know?) – concept of operations

2. Requirements (derived from User Needs)

3. Design (allocate requirements to architecture elements)

4. Sell off the requirements (V&V)
1. Verification (Did we build the system right?)

2. Validation (Did we build the right system?)

5. Integration/Certification

According to Jon Friedman, Aerospace and Defense Industry Marketing
Manager at MathWorks in Natick, MA, “A well-defined process includes the
following phases: requirements capture and validation, design and test,
implementation and integration, final verification, and sign-off.” [MAE]

11engility.com

Engility Proprietary

Compare to the “10 Steps”
Number Step Design 2.0 Process

1 Perform a safety or security assessment User Needs

2 Determine a target system failure rate User Needs

3 Use the target system failure rate to determine the appropriate level
of development rigor

User Needs

4 Use a formal requirements capture process Requirements

5 Create software that adheres to an appropriate coding standard, Design

6 Trace all code back to their source requirements Design

7 Develop all software and system test cases based on requirements, Verification & Validation

8 Trace test cases to requirements, Verification & Validation

9 Use coverage analysis to test completeness against both
requirements and code

Verification & Validation

10 For certification, collect and collate the process artifacts required to
demonstrate that an appropriate level of rigor has been maintained

Certification

12engility.com

Engility Proprietary

A Few Words About Requirements

• Requirements are:

• Specific, quantifiable, and verifiable statements
that drive the development or maintenance of
capabilities to meet stakeholder needs.

• Requirements define a capability in terms of its
function, interfaces, performance, and
constraints, taking into account the user’s
preferences and expectations

13engility.com

Engility Proprietary

Natural Language Processing (NLP)
• NLP analysis of requirements was pioneered by NASA researchers Wilson, Rosenberg, and

Hyatt in the 1990s [MAE]

• NASA identified “Quality Attributes” that requirements should possess:

• “Complete -precisely defines the systemôs responses to all real-world situations the system will
encounter.

• Consistent - does not contain conflicts between requirements statements.

• Correct - accurately identifies the conditions of all situations the system will encounter and
precisely defines the systemôs response to them.

• Modifiable - as a logical structuring with related concerns grouped together.

• Ranked - organizes the specification statements by importance and/or stability (which may conflict
with the documentôs modifiability).

• Traceable - identifies each requirement uniquely.

• Unambiguous - states all requirements in such a manner that each can only be interpreted one
way.

• Valid - all project participants can understand, analyze, accept or approve it.

• Verifiable - must be consistent with related specifications at other (higher and lower) levels of
abstraction” [QRA]

• Companies such as QRA Corp. provide NLP products to identify requirements problems

14engility.com

Engility Proprietary

Five Types of Requirements

1. Functional –ñWhat must it do?ò

2. Performance –ñHow well must it do it?ò

3. Interface – “What it must connect with?

4. Constraint –ñWhat limitations and constraints does the customer want?ò

5. Environment –ñUnder what conditions must it operate?ò

Performance

System

Functional

15engility.com

Engility Proprietary

An Example of a Requirements Problem

• System “Nexus” board
• Systems Engineering specified one circuit card to supply:

• Several disparate interfaces (2 bidirectional parallel, 4 RS-232 ports)

• Needed to be “as fast as possible”

• Critical questions about performance requirements went unanswered

• Lead Engineer used “Code and Fix” approach (“mine field”)

• Circuit card design was over a year late

• $250K cost growth due to additional personnel, prototypes, board layouts

• Final post mortem revealed these parallel port test results:

• COTS FIFO board – 2 msec per message transfer

• “Nexus” board CPU only – 500 usec per message transfer

• “Nexus” board DMA accel. – 128 usec per message transfer

• Destination system context switch was 20 msec MINIMUM!!!

Requirement should have been about 10 msec per message transfer

16engility.com

Engility Proprietary

Improving Code Quality

17engility.com

Engility Proprietary

Design Rigor Supports a Secure System
(the problem)

• Programming Research, in “How IoT is Making Security Imperative
for all Embedded Software,” recommended that software developers
take more care in releasing new IoT products
• ñSecurity problems often stem from the need to accelerate development and

bring new products to market ahead of the competitionò

• ñA majority of security vulnerabilities are a result of coding errors that go
undetected in the development stageò

• ñCarnegie Mellonôs Computer Emergency Response Team (CERT) found that
64% of vulnerabilities in the CERT National Vulnerability Database were the
result of programming errorsò [PR0]

18engility.com

Engility Proprietary

Design Rigor Supports a Secure System
(the solution)

• [IBID] stated that organizations should incorporate coding standards
(CERT C) and utilize the CERT-developed Common Weakness
Environment (CWE) database [PR0]
• MISRA-C and ISO/IEC are other available standards

• Programming Research, Critical Software, or Jama Software offer static code
analysis tools to assist with analysis of code to these standards

• (IBID) ñAn increasing number of organizations are making adherence to these
guidelines and standards a requirement for both internal development
organizations and outsourced application development vendorsò [PR0]

19engility.com

Engility Proprietary

Cyber Security

• Massive data breaches at Target, OPM, and the Ukrainian Power System
lend credence to the concern that vulnerabilities in our code need to be
mitigated

• Chris Young, CEO, McAfee, in the Lawfare Podcast, “Chris Young on
Cybersecurity and a Debate on Using Data to Protect Data,” stated, “…you
have a massive change in the attack landscape é Ten years ago we saw
about 25 new threats or new variants of malware a day é Today, about ten
years later, we see over 500,000 new threats a day.”[HAS]

• ñIn late 2016, Dr. Johannes Ullrich at the Internet Storm Center conducted a
simple experiment. [He] connected a DVR with a common user name and
password to an ordinary cable modem and captured all packets going in and
out of the DVRéThe first attempt to log in to his DVR occurred in the first
minute. Within the first hour, there were 54 unique attempts, approximately
one per minute.” [HAS]

20engility.com

Engility Proprietary

How to Avoid the “Minefield”

• The solution is clearly multi-layered
• The National Security Agency has even made lightweight cryptologics available for

public use in order to secure data in motion or at rest [S&S]

• Does your operating system manage all processes equally, or can higher-priority
applications be isolated and continue to operate if others crash (least privilege
principle)? [HAS]

• Can you leverage virtualization to partition apps to run on separate virtual machines?
[HAS]

21engility.com

Engility Proprietary

ADA, Qualified RTOS, etc.

• Military and Aerospace Electronics, in the article, “Safety and Security in
Critical Avionics,” mentioned that the ADA programming language is still
heavily used in avionics due to its tighter controls on Classes and Types
[MAE]

• A qualified RTOS such as Green Hills Software’s Integrity-178B and DDC-
I’s DEOS have been utilized in enough applications to prove their worth
[MAE]

22engility.com

Engility Proprietary

Additionally, Peer ReviewsFind Defects

• The defects vary with the review object
• Requirements: Is the system buildable? Is it testable?

• Design: Does it meet its requirements?

• Implementation: Does it correctly render the design? Is it maintainable?

• Your peers help find the defects
• The people best equipped to help identify defects are other technical contributors

• Managers do not participate

23engility.com

Engility Proprietary

Peer Reviews Clear Defects Systematically

• When you do a peer review, you are not:

• Mentally executing code

• Proofreading documents

• Rather, you are:

• Focused on the product’s “criticals to quality”

• Clearing the entire product of known defect types that affect those “criticals to quality”

• As a Technical Contributor, you know what these are

• Highly recommend a checklist driven review as the method, common issues are [Wind]:

• Buffer overflow

• Parameters check (or lack thereof)

• Logic errors

• Redundancy management

• Interaction accidents

24engility.com

Engility Proprietary

Benefits of Peer Reviews
For an 85 KLOC project:

From unit test::

34 defects/KLOC

2890 defects

Integration test:

50% defect removal rate

5 hours/defect

7225 hours

From integration:

17 defects/KLOC

1445 defects remain

System test

40% defect removal rate

10 hours/defect

5780 hours

Delivery:

10.2 defects/KLOC

867 defects remain

Investment to achieve

10 defects/KLOC:

13,000 hours

From unit test::

34 defects/KLOC

2890 defects

Integration test:

50% defect removal rate

5 hours/defect

3330 hours

From integration:

12.7 defects/KLOC

666 defects remain

System test

40% defect removal rate

10 hours/defect

2660 hours

Delivery:

4.7 defects/KLOC

400 defects remain

Peer review (54% defect removal rate)

611 LOC/review

11.2 (nominal) hours/peer review

1 (nominal) hour/defect (1-3)

1558 hours

From peer review:

15.7 defects/KLOC

1332 defects remain

Investment to achieve

4.7 defects/KLOC:

7548 hours

Source: internal Engility
Software Development Project

25engility.com

Engility Proprietary

Some Peer Review Points

Peer

Review

here!

Adapted from Systems Engineering, Coping with

Complexity, pp. 8, 160

Defining

what is to

be built

Integrating,

verifying, &

validating what

has been built

Integrated

Components

Component

Development

Integrated

Subsystems

Verification

Validation

Verification

User’s Needs,

Requirements

and Approval

Operational

Capability

System

Requirements

Integrated

System

Architectural

Design

Verification

Verification

Verification

Verification
Systems Engineering

Development and

Fabrication

26engility.com

Engility Proprietary

Testing

27engility.com

Engility Proprietary

What are Verification and Validation (V&V)?

• Processes to deliver a quality product that
• Meets its specification

• Satisfies the customers’ needs

• Works as intended in the operational environment

• Verification ensures the product correctly implements stated requirements

• Validation ensures the product is traceable to stated customer needs

VERIFICATION asks: ñDid we

build the product right?ò

VALIDATION asks: ñDid we

build the right product?ò

28engility.com

Engility Proprietary

Products and Requirements
• A product is anything that can be verified and validated

• Single elements: requirements, design, software, hardware, or documentation

• Single elements may be integrated together to become components within a larger product: a
single stand-alone system or segments of a larger system

• Products are defined by their allocated requirements

• Products are verified and validated by evaluating their requirements against
specified acceptance criteria

• Defects are problems that, if not corrected, would cause a product to not
meet its acceptance criteria

• In the V&V world, “test” can be a
• Verb referring to the verification activity – “test a product…”

• Noun denoting a verification method – inspection, analysis, demo, test

29engility.com

Engility Proprietary

Verification and Validation (V&V)

• May be performed by:
• The development team building a product

• Independent V&V teams within an organization

• V&V Methods – choose the most efficient:
• Inspection is used for qualitative requirements that can be visually verified by sight,

touch, or hearing.

• Analysis is used when the requirement cannot be verified using another method or to
augment another method

• Demonstration is used where only functionality is specified by the requirement

• Test is used when there is a quantitative aspect to the requirement

30engility.com

Engility Proprietary

Flight Qualification

• NASA (DoD, FAA, etc.) sets standards for requirements traceability

• Jama S/W, in their “Traceability Best Practices” white paper, recommends
the following best practices [Jama]:
• Trace relationships to represent systematic decomposition and test coverage

• Ensure traceability reporting and proper coverage…

• Assess the impact of change before it occurs…

• Document changes for complete visibility and a detailed audit trail…

• Stay synced…by referencing people and items…

31engility.com

Engility Proprietary

Flight Certification

• Automated V&V: Critical Software, in the whitepaper, “Automated
Verification and Validation,” stated, “After test procedures are produced, all
necessary test execution campaigns can be performed automatically when
requested by the Test Engineers:
• Automatic execution of all tests to be formally used for the certification record,

• Automatic production of a report to be used as validation evidence.ò[A&A]

• Critical Software, in the whitepaper, “Safety Critical Validation,” stated that
“[Reliability, Availability, Maintainability, and Safety] RAMS analysiséprovides
useful inputs for requirements completeness and coherence, especially
regarding safety and fail-safe issues.”[SCV]
• [next slide]

32engility.com

Engility Proprietary

RAMS Diagram

c Copyright CRITICAL Software, S.A. All rights reserved

33engility.com

Engility Proprietary

Load Testing

• It is important to stress test any system to ensure performance is acceptable
and repeatable

• Several types of testing are suggested: [API]
• Spike testing - what happens when you hit that max stress level quite suddenly

• Configuration testing - helps you find any changes to the pieces of your system that
affect behavior or performance

• Endurance testing - monitors continuous load, red-flagging any slow leaks that may be
slowing you down or wasting resources

• Isolation testing - used to try to zero in on a specific problem in hopes of finding its cause
and fixing it

• Comparative testing - comparing the performance of two or more systems, both to find
anomalies and sometimes to make a competitive decision

• Companies such as SmartBear provide applications to perform these kinds of
tests

34engility.com

Engility Proprietary

Conclusion

35engility.com

Engility Proprietary

Conclusion
• Embedded Systems development is heavily cost-driven and there are significant

market pressures to “shoot the Engineer and put it into production.” However,
releasing products that have Safety or Security vulnerabilities can cost hundreds of
thousands of dollars in rework or MILLIONS in lawsuits

• Improve Software Quality by following the “10 Steps”

• Slow down and take the time to design and code properly, since ñA majority of
security vulnerabilities are a result of coding errors that go undetected in the
development stageò [PR0]

• Employ coding standards such as CERT C and CWE. Programming Research,
Critical Software, or Jama Software offer tools to assist with analysis of code to
these standards

• The Engility graphic shows that DEFECTS act like mines in a minefield. While
“Code and Test” methodologies just CLEAR A PATH through the minefield, System
overload, operator error, or race conditions could force the system into unexplored
territory

• Design rigor can actually save cost in the long run

36engility.com

Engility Proprietary

Help Needed

I am trying to get my Senior Member status.

If you are a Senior Member or Fellow, please see me after the meeting.

37engility.com

Engility Proprietary

#ESCconf

Speaker/Author Details

Dwight Buesis a Georgia Tech Computer Engineer with 30+ years' experience
in computer hardware, software, and systems and interface design.He has
worked in Power Generation, Communications, RF, Command/Control, and
Test Systems. He is the author of numerous technical articles in Design News,
EE Times, and IoTInstitute magazines and blogs. He has previously
presented at DesignWest2013, EE Live! 2014, and ESC Silicon Valley 2016
conferences.

Dwight is a Certified Scrum Master and teaches courses in Architecture,
Requirements, and IVV&T. He is also a certified Boating Safety instructor
with the Commonwealth of Virginia and the United States Power Squadrons.
He is currently working several STEM projects, sponsoring teams for
ŎƻƳǇŜǘƛǘƛƻƴǎ ƛƴ ǘƘŜ !ŜǊƻǎǇŀŎŜ LƴŘǳǎǘǊƛŜǎ !ǎǎƻŎƛŀǘƛƻƴΩǎ ό!L!ύ ¢ŜŀƳ !ƳŜǊƛŎŀ
Rocketry Challenge (TARC) and the Robotics Education and Competition
CƻǳƴŘŀǘƛƻƴΩǎΣ ±ŜȄ SkyriseRobotics Challenge.

38engility.com

Engility Proprietary

Engility Bio

Engility Holdings, Inc. (NYSE: EGL), a leading provider of mission-critical and
highly technical services to the U.S. government, is engineered to make a
difference. Built on a five-decade commitment to our customers and our
country, Engility delivers world-class performance, efficiency and value in a
broad range of services, including engineering and technology life cycle
support, program and business support and specialized technical consulting.
Headquartered in Chantilly, Virginia, and with offices around the world, Engility
supports customers throughout the defense, intelligence, space, federal civilian
and international communities, drawing on our intimate understanding of
customer needs, our deep domain expertise and our highly skilled employees to
develop and deliver on-target solutions.

39engility.com

Engility Proprietary

Stevens, Richard. Systems Engineering: Coping with Complexity, Prentice Hall, 1998, ISBN 0-
13-095085-8

Juran, Joseph and Godfrey, A. Blanton. Juran’s Quality Handbook, McGraw Hill, 1998, ISBN 0-
07-034003-X

Military and Aerospace Electronics, “Safety and Security –critical Avionics Software,” Feb
2011 [MAE]

High Assurance Systems white paper, “Cybersecurity for Things, Part 1,” 2017 [HAS]

Chabroux, Michael, “There is no Safety without Security and no Security Without Safety,” Wind
River, 2016 [Wind]

SmartBear, “API Load Testing” [API]

Thomas, Jay, Embedded Magazine, “Software Standards 101: Tracing Code to Requirements,”
22 Mar 2016 [JT]

Programming Research, “How IoT is Making Security Imperative for all Embedded Software,”
2016 [PR0]

Publication References

40engility.com

Engility Proprietary

• Beaulieu, Ray (et al), “Simon and Speck: Block Ciphers for the Internet of Things,” 9 Jul 2015,
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session1-shors-paper.pdf [S&S]

• QRA Corp, “How to Eliminate Over Half of all Design Errors Before they Occur” [QRA]

• Jama Software, “Traceability Best Practices” [Jama]

• Programming Research, “Addressing Security Vulnerabilities in Embedded, Applications…,”
[PR1] and “Automated Coding Standards” [PR2]

• Critical Software, “Automated Verification and Validation,” and “Safety Critical Validation”
[SCV]

• Veracode, “State of Software Security,” 2016 [SoSS]

• The Atlantic, The Coming Software Apocalypse”, Sept 2017 [CSA]

Publication References (cont.)

http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session1-shors-paper.pdf

41engility.com

Engility Proprietary

Our website:

www.engilitycorp.com

Contact Information:

Dwight Bues

Systems Engineer

(703) 653-5843

Dwight.Bues@engility.com

Contact Us

42engility.com

Engility Proprietary

This presentation consists of Engility Corporation general capabilities information that does not contain controlled technical
data as defined by the International Traffic in Arms (ITAR) Part or Export Administration Regulations (EAR) per EGL-CR02667.

