
An Expression-Oriented Approach to Programming Education

Exploiting the Synergy between Computing and Math

Learning Syntax is Known to be an Obstacle in Programming Education

Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)

Scratch [MIT Media Lab] Hedy [Felienne Hermans, Leiden University]

Alternative Approach

Exploit Synergy with Math Embrace Syntax

Math Abstractions … Baby Steps

and I am one baby syntax turtle ➔

Back to basics - let’s reminisce our early computing education:

Math Abstractions …

2 / 7 + 3 / 7 = 5 / 7

3 4

9

9 (3 + 4) = 63x

1,000,000 – 997 = 999,003

6 7 = 42x

11 +

31

42

positional numeral system, operations, operator precedence, fractions, (oh my!) …

8 1 9 2 = 8 x 1000 + 1 x 100 + 9 x 10 + 2 x 1

a b

c

c (a + b) = ca + cbx

42

18

21

9
=

Math Abstractions …

The turtles … they are multiplying (!) – here we are, in middle school and high school:

How much syntax should we feed students to start learning programming?

Raise to Power Multiplication Division Addition Subtraction Less than
String

Concatenation

MATH 𝑥𝑦 𝑥𝑦 | x * y 𝑥 ÷ 𝑦 | x / y 𝑥 + 𝑦 𝑥 − 𝑦 𝑥 < 𝑦 𝑥𝑦 | 𝑥 ∙ 𝑦

FORTRAN x ** y x * y x / y x + y x – y x .LT. y x // y

LISP (pow x y) (* x y) (/ x y) (+ x y) (– x y) (< x y) (concatenate x y)

C / C++ pow(x, y) x * y x / y x + y x – y x < y x + y

Haskell x ^ y | x ** y x * y x / y x + y x – y x < y x ++ y

Python x ** y x * y x / y x + y x – y x < y x + y

Java Math.pow(x, y) x * y x / y x + y x – y x < y x + y

JavaScript x ** y x * y x / y x + y x – y x < y x + y

OCaml x ** y x * y | x *. y x / y | x /. y x + y | x +. y x – y | x –. y x < y x ^ y

MS-Excel x ^ y x * y x / y x + y x – y x < y x & y

.:. OK, sure, but those are just expressions. Computing them is not programming, right? Expressions aren’t enough, right? ➔

Note: MATH stands for Generally accepted Math notation

A User-Centred Approach to Functions in Excel

30th June 2003

Simon Peyton Jones Alan Blackwell Margaret Burnett
Microsoft Research Cambridge University Oregon State University

to program with spreadsheets all the syntax you need is that of expressions!

Critique of the Traditional Spreadsheet Core
• Lack of functional abstraction

• Considerable research work has been done on this
• December 3rd, 2020: Microsoft Research announced LAMBDA

• Overly simplistic type system
• All top-level variables must be a worksheet
• Worksheets are non-composable cell containers
• All cells are unitype and must be referenced via coordinates
• A1 notation should be considered harmful

• Entanglement of model and visualization
• Worksheets are the only true variables of the core

• They are containers that hold state, which includes unreduced expressions

• Worksheets are also the primary element of the presentation
• They play an important role as UI layout managers

[8] E. Alda et al. 2021. “Towards Wide-Spectrum Spreadsheet Computing.”

4th International Conference on Information and Computer Technologies (ICICT 2021).

HI, USA, 2021, pp. 233-242. doi: 10.1109/ICICT52872.2021.00046.

https://ieeexplore.ieee.org/document/9476942

But traditional spreadsheets have issues that make them unacceptable for education and other purposes …

ZenSheet / Lilly

A language-centric redesign of spreadsheets has been shown to work

ZenSheet supports functional abstraction and composable data structures.

2D arrays can be used as worksheets: it truly generalizes spreadsheets!

https://www.youtube.com/watch?v=mJa0_gKE6xo

Higher-Order Functions

Rich Type System: Dynamic Arrays , Tuples, Structs

Wide-Spectrum Computing

Experience Report:

Expressions-First Programming 101

Experience Report:
Modernizing Programming 101 with an Expressions First Approach

• Setting

• Location: Simón Bolívar University – Venezuela

• Ranked top 5 among Latin American universities in the 80s

• Course: Programming 101 for engineers, excluding software engineering students

• Nearly all students have no programming experience

• Delivery: interactive online (programming theory & lab) plus recorded video

• Only 10 usable weeks (20 lectures) for theory and 8 usable weeks (16 hours) for lab instruction

• Students set up their own lab, with material and some technical assistance from the lab instructor

• Key tools: Git & GitHub (https://github.com/), MSYS2 (https://www.msys2.org/), code editors

Experience Report:
Modernizing Programming 101 with an Expressions First Approach

• Objectives

• Old course objectives:
• students must learn basic C programming

• emphasis is placed on array processing and I/O

• New course objectives: form students who exhibit
1. A clear understanding of basic programming concepts

2. Confidence in their ability to learn other languages

3. Basic proficiency in one or more languages

Expressions

𝑎 𝑐 + 𝑏 = 𝑎𝑐 + 𝑎𝑏

1

1 +
1
𝑛

𝑛

𝜋𝑟2

𝑠𝑖𝑛2𝑥

𝑠𝑖𝑛 𝑥2

𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥

a * (b + c) == a*c + a*b

1 / pow(1 + 1.0/n, n)

M_PI * pow(r, 2)

pow(sin(x), 2)

sin(pow(x, 2))

sin(sin(x))

a * (b + c) == a*c + a*b

1 / (1 + 1/n)**n

Math.PI * r**2

Math.sin(x)**2

Math.sin(x**2)

Math.sin(Math.sin(x))

a * (b + c) = a*c + a*b

1 / (1 + 1/n)^n

pi() * r^2

sin(x)^2

sin(x^2)

sin(sin(x))

Math C++ JavaScript Lilly

Functional Abstraction
dynamically typed languages

𝐴 = 𝜋𝑟2

𝐷 = (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2

let area = r => Math.PI * r**2;

let point1 = { x: 3, y: 2 };

let point2 = { x: 6, y: 6 };

function distance (p1, p2) {

return Math.sqrt((p1.x – p2.x)**2 + (p1.y – p2.y)**2)

}

distance(point1, point2)

:: area := fn(r) -> pi() * r^2;

type Coord = struct { x; y; };

:: point1 = Coord(3, 2);

:: point2 = Coord(6, 6);

:: distance := fn (p1, p2) ->

sqrt((p1.x – p2.x)^2 + (p1.y – p2.y)^2);

distance(point1, point2)

Math JavaScript Lilly

Functional Abstraction
statically typed language

𝐴 = 𝜋𝑟2

𝐷 = (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2

double area(double r) {

return M_PI * pow(r, 2);

}

struct Coord {

double x;

double y;

};

Coord point1 = { 3, 2 };

Coord point2 = { 6, 6 };

double distance (Coord p1, Coord p2) {

return sqrt(pow(p1.x – p2.x, 2) + pow(p1.y – p2.y, 2));

}

:: area := fn(double r) => double -> pi() * r^2;

type Coord = struct {

double x;

double y;

};

:: point1 = Coord(3, 2);

:: point2 = Coord(6, 6);

:: distance := fn (Coord p1, Coord p2) => double ->

sqrt((p1.x – p2.x)^2 + (p1.y – p2.y)^2);

Math C++ Lilly

Inductive Math definitions => Recursion

/// fibonacci

/// fibo(0) ==> 0

/// fibo(1) ==> 1

/// fibo(n) ==> fibo(n-1) + fibo(n-2) // ... for n > 1

// C++

int fibo(int n) {

return n < 2 ? n : fibo(n - 1) + fibo(n - 2);

}

// JavaScript

let fibo = n => (n < 2 ? n : fibo(n - 1) + fibo(n - 2));

// Lilly (dynamically typed)

:: fibo := fn(n) -> if(n < 2, n, fibo(n - 1) + fibo(n - 2));

// Lilly (statically typed)

:: fibo := fn(int n) => int -> if(n < 2, n, fibo(n - 1) + fibo(n - 2));

Expressions-First Course Plan

Level 0
• Values and basic types
• Computing expressions using literal constants
• Variable definitions: using variables in expressions
• Computing with simple values and tuples
• Defining functions by abstracting expressions

Level 1
• Making algorithmic decisions: conditional expressions
• Defining recursive functions from inductive definitions
• Computing functional reductions over sequences
• Understanding tail recursion and iteration

Level 2
• Higher order functions
• Curry transformations
• Nested functions and scope rules

Level 3

• Pointers and references

• Associative maps and mutable arrays

• Persistence

Level 4

• Recursive types: trees

• Sum types: dealing with polymorphism

• Polymorphism in dynamically typed languages

• Polymorphism in statically typed languages

• Polymorphism in functional languages

Experience Report:
Modernizing Programming 101 with an Expressions First Approach

Findings

So far, students have shown:

1. a practical understanding of the difference between dynamically typed and statically typed languages, well

beyond a merely abstract notion, having been exposed to JavaScript, C++, and Lilly for several weeks;

2. a good grasp of the difference between the functional and imperative programming styles, due to spending

the first 4 weeks without performing any state mutation besides defining and initializing immutable variables,

essentially using an SSA-form (single static assignment) style of programming in JavaScript, C++, and Lilly;

3. ability to code in JavaScript and C++, completing programming assignments for the levels covered so far.

References
• [1] Lamb, Annette and Johnson, Larry April 2011. “Scratch: Computer Programming for 21st Century Learners.” Teacher Librarian Magazine 38, 4;

ProQuest Central

• [2] Hermans, Felienne August 2020. “Hedy: A Gradual Language for Programming Education.” ICER ’20 Virtual Event, New Zealand

• [3] Wolfram, Conrad 2011. “Teaching kids real math with computers.” TED Talk. https://www.youtube.com/watch?v=60OVlfAUPJg

• [4] Wolfram, Conrad 2014. “Stop Teaching Calculating, Start Learning Maths!” WISE Talk: World Innovation Summit for Education.

https://www.youtube.com/watch?v=xYONRn3EbYY

• [5] Peyton Jones, Simon; Blackwell, Alan; Burnett, Margaret 2003. “A User-Centred Approach to Functions in Excel.” Proceedings of the Eighth

ACM SIGPLAN International Conference on Functional Programming (ICFP ’03) ACM, New York, NY, USA, 165–176.

https://doi.org/10.1145/944705.944721

• [6] Alda, Enzo and Figuera, Monica October 2017. “ZenSheet: a live programming environment for reactive computing.” SPLASH’17, LIVE 2017

Workshop. Vancouver, British Columbia, Canada. https://2017.splashcon.org/details/live-2017/5/ZenSheet-a-live-programming-environment-for-

reactive-computing

• [7] Figuera, Monica October 2017. “ZenSheet Studio: A Spreadsheet-Inspired Environment for Reactive Computing.” SPLASH’17 SRC - SPLASH

Companion’17. Vancouver, British Columbia, Canada. ACM ISBN 978-1-4503-5514-8/17/10. https://doi.org/10.1145/3135932.3135949

• [8] E. Alda et al. 2021. "Towards Wide-Spectrum Spreadsheet Computing." 4th International Conference on Information and Computer

Technologies (ICICT). HI, USA, 2021, pp. 233-242. doi: 10.1109/ICICT52872.2021.00046.

Thank You!

	Slide 1: An Expression-Oriented Approach to Programming Education
	Slide 2: Learning Syntax is Known to be an Obstacle in Programming Education Responses: Block Coding (replace syntax with shapes) & Gradual Languages (relaxed syntax rules)
	Slide 3: Alternative Approach Exploit Synergy with Math  Embrace Syntax
	Slide 4: Math Abstractions … Baby Steps
	Slide 5: Math Abstractions …
	Slide 6: Math Abstractions …
	Slide 7
	Slide 8: They Already Know The Syntax!
	Slide 9
	Slide 10: Critique of the Traditional Spreadsheet Core
	Slide 11: ZenSheet / Lilly
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Higher-Order Functions
	Slide 16: Rich Type System: Dynamic Arrays , Tuples, Structs
	Slide 17: Wide-Spectrum Computing
	Slide 18: Experience Report: Expressions-First Programming 101
	Slide 19: Experience Report: Modernizing Programming 101 with an Expressions First Approach
	Slide 20: Experience Report: Modernizing Programming 101 with an Expressions First Approach
	Slide 21: Expressions
	Slide 22: Functional Abstraction dynamically typed languages
	Slide 23: Functional Abstraction statically typed language
	Slide 24: Inductive Math definitions => Recursion
	Slide 25: Expressions-First Course Plan
	Slide 26: Experience Report: Modernizing Programming 101 with an Expressions First Approach
	Slide 27: References
	Slide 28: Thank You!

