About Speaker

- Raj Laad (raj.laad@pristineinfotech.com)
- CTO of Pristine Infotech
 - Business solutions to mobile workforce - business intelligence at your fingertips
- Owner of GURU Technology
 - Consulting to medium-large organizations across industries
- Technologies
 - Products, Web Applications, SOA/Web Services
 - Enterprise Systems
 - Business Analysis, Data Warehousing
 - C#, ASP.NET, ADO.NET, C++, COM, XML
 - Java, J2EE/EJB, JSP, JMS
 - Mobile Computing
Agenda

- History
- Architecture and Technologies
- Security and Versioning
- Development and Deployment Environments
- Interoperability
- Conclusion
- Code Samples
- Q & A
Java History

- Sun Microsystems began development early 1990s
- Intended for smart devices - PDAs, Set Tops
- Response to C++ Issues/Limitations
 - Lack of garbage collection
 - Too big for embedded software
 - No portable services for security, distributed programming, threading, etc.
 - Wanted portable platform – easy to port to all types of devices
- James Gosling came up with Java
- Java and Java platform first released in 1995
- Popularity grew with the rise of internet
.NET History

- Developed by Microsoft in late 1990s
- Needed unified solution to common programming problems
 - Memory management
 - Security
 - User interface
 - Data access
 - Exception handling
 - Common type system (VB, C#, C++)
 - Solve DLL hell
- Move away from COM problems
- And answer to Java
Language Feature Differences

- Indexer
- Operator overloading
- Namespaces
- Class & files different, partial classes
Standalone Applications

Native Applications
 Native Interface
 Applications
 UI Components
 Types
 Threading, File/Stream
 Compilation (JIT)
 Memory Management (GC)
 Security, Network
 Data
Operating System

Runtime

Database
Standalone Applications

- Java Applications
- AWT/Swing
- Java Runtime
- Data: JDBC

Operating System

Class, JAR

Database
Standalone Applications

Native Applications

COM

Common Language Runtime

Data: ADO.NET

Operating System

.NET Applications (C#, VB, C++, ...)

Assembly, IL

Windows Forms
Windows Controls
Client Server Applications

- Trend towards web browser web server
- Better than CGI scripts
 - Performance
 - Simplicity
 - Reusability
 - Functionality availability
 - Open standards within platform
 - Security
Client Server Applications

Browser

- HTML Form
- ActiveX

IIS

- ASP / ASPX
- ADO.NET
- InterOp
- .NET Remoting

- Database
- Legacy
- Remote Servers

HTTP connections:
- From HTML Form to ASP / ASPX
- From ActiveX to ADO.NET
- From ADO.NET and InterOp to .NET Remoting
- From .NET Remoting to Database
- From Database to Legacy
- From Legacy to Remote Servers
Client Server Applications

Browser

- HTML Form
- Applet

Web Server

- Servlet / JSP
- Servlet / JSP
- Servlet / JSP
- JDBC
- JNI
- RMI
- Database
- Legacy
- Remote Servers
Client Server Applications

- HTML controls
 - Data entered lost
 - Hidden variables to store state

- Server controls
 - Data maintained
 - .NET - ASPX
 - Java - JSF, Tag libraries

- Java web servers
 - Apache, Tomcat
 - Weblogic, Websphere
 - SunOne, JBoss

- .NET web server
 - IIS
Distributed Computing

- Applications distributed
 - Developed by departments
 - Developed by subsidiaries
 - Developed by partners

- Remote object registry

- Remote object interface

- Remote client

- Object serialization
 - Pass objects
 - Marshaling / Un-marshaling

- Distributed garbage collection
Distributed Computing

Remote Server

Remote Object

Skeleton

Registry

Remote Interface

Lookup

Remote Client

Stub

RMI Client

Legacy System

Database
Enterprise JavaBeans (EJB)

- Server side components
- Based on RMI
- EJB Model
 - EJB server, EJB containers
 - Home interface & home object – factory pattern
 - Remote interface and EJBOBJECT/Enterprise JavaBean
 - EJB client
EJB

- Enable distributed development - roles
 - EJB server provider
 - EJB container provider
 - EJB developer
 - EJB deployer
 - Application developer

- Performance issues if objects fine grained
Service Oriented Architecture (SOA)

- Different paradigm for distributed computing
- Technologies
 - SOAP - Simple Object Access Protocol
 - WSDL – Web Services Description Language
 - UDDI – Universal Description, Discovery and Integration
 - XML – data representation
 - HTTP/SNTP - transport
- Platform independent
- Web Services
SOA
AJAX - Asynchronous JavaScript and XML

Before AJAX

Browser

Web Server

ActiveX, Applets, Flash

HTTP Request

Hidden frame / iframe
XMLHttpRequest
AJAX

- Increase in bandwidth
- Browser capabilities increase and become more compatible with one another
- Rediscovery of XMLHttpRequest object
 - Allows asynchronous messages between browser and web server
 - No need to refresh entire web page for dynamic data
AJAX

After AJAX

Browser

Web Server

User Interface

AJAX Engine

Javascript Call

HTML, CSS

HTTP Request

XML Data
AJAX

- Technologies
 - JavaScript
 - CSS
 - Web page DOM/JSON
 - Asynchronous communication with web server
 - XML

- Applications
 - Rich user experience, real-time form data validation
 - Auto-completion, load on demand
 - Sophisticated user interface and effects, partial submit
 - Web 2.0 mashups
 - Page as an application

- Google Maps, Gmail, Yahoo! News
Mobile Computing

- Cell phones ubiquitous to age old phone
- Access information from anywhere
- Technologies
 - Windows Mobile, J2ME
 - Android, iPhone (Mac OS X), Symbian, Palm
 - Connectivity: cellular, WiFi, Bluetooth
 - GPS, A-GPS – location based services
 - Camera, video
 - Voice, music
 - SMS, MMS
Additional Technologies

- Java
 - JMS, JNDI, Jini/JavaSpaces

- .NET
 - WCF, WPF, WWF
 - LINQ, MSMQ
Security

- Very critical for consumer or enterprise applications
- Browser security
 - Sandbox model
 - Can access from codebase
- Threat modeling
 - Authentication
 - Authorization
 - Data input validation
 - Data protection
 - Configuration management
 - Auditing
 - Exception management
 - Source code protection
Security

- **Cryptography**
 - Sender authentication, non-repudiation, data integrity, confidentiality
 - Hashing, symmetric keys, asymmetric keys, signing
 - RSA, DSA, AES, Triple DES, SHA, PKCS#5, RC2, and RC4

- **Permissions**

- **Role based security**
 - Authorization - privileges
 - User identity and roles

- **Secure Communications**
 - SSL, TSL
 - HTTPS over SSL/TSL

- **Platform security**
 - Strong data typing, automatic memory management
 - Byte code verification, secure class loading
Security

- .NET Framework
 - Code access security
 - Permission sets – FullTrust, LocalIntranet, Internet, Nothing
 - Code groups: app directory, GAC, site, publisher, URL, zone, …
 - Security policy – enterprise, machine, user, AppDomain
 - Web configuration file example

- Java
 - Policy file example
Versioning - Java

- Stream Unique ID stored in serialized objects
- Package versioning – in manifest file
 - VM: java-vm.specification.version, java-vm.specification.vendor, …
 - Runtime: java.version, java.vendor, java.specification.version, …
 - Package: Package-Title, Package-Version, …
- Component versioning not solved
 - Component dependency
 - JAR versioning
 - Application using components that use different versions of a component
 - Components shared across different JRE versions
 - JSR 277 on hold
Versioning - .NET

- Assembly level versioning
- Assembly version
- Dependent assembly versions
- Proper version assembly is bound to calling assembly
Development and Deployment Environments

- **Development Environment**
 - Visual Studio
 - Eclipse, Java Studio, IntelliJ, JBuilder, JDeveloper

- **Deployment Environment**
 - IIS
 - Apache, Tomcat, Weblogic, Websphere, SunOne, JBoss
Interfacing Java and .NET

- Interoperability issues
 - Byte order, data format, hardware compatibility
 - Complex integration issues
 - Complexity of systems
 - TCP/IP connection is not enough

- Approaches
 - Shared resource
 - File, database, queue
 - In-process Interop
 - JNI, COM Interop
 - Cross compilation/tools: IKVM, Grasshopper, JuggerNET
 - Out-of-process Interop
 - Sockets, RPC
 - XML/HTTP, web service
Technology Comparison

<table>
<thead>
<tr>
<th>Java</th>
<th>.NET</th>
</tr>
</thead>
<tbody>
<tr>
<td>JDBC</td>
<td>ADO.NET</td>
</tr>
<tr>
<td>JSP/Servlet</td>
<td>Aspx</td>
</tr>
<tr>
<td>JMS</td>
<td>MSMQ</td>
</tr>
<tr>
<td>RMI</td>
<td>.NET Remoting/WCF</td>
</tr>
<tr>
<td>EJB</td>
<td>COM+</td>
</tr>
<tr>
<td>JAX-WS/Axis</td>
<td>Asmx/WCF</td>
</tr>
<tr>
<td>J2ME</td>
<td>Windows Mobile</td>
</tr>
</tbody>
</table>
Closing Thoughts

- .NET offers a unified vision of software development
- Java offers a wide array of third-party choices for dev. environment
- .NET is clear winner as a desktop application dev. environment
- Java has much higher penetration into back-end systems
- Java stronger in mobile computing
- Java and .NET compete in web application server space

Future

- Parallel computing
- Event-driven web applications, server push
- Grid computing
- Robotics
AJAX

- Code Sample
Web Service

- Code Sample
RMI

- Code Sample